Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Environ Res Public Health ; 19(11)2022 05 30.
Article in English | MEDLINE | ID: covidwho-1892868

ABSTRACT

Previous studies found that exposure to ambient nitrogen dioxide (NO2) was associated with an increased risk of incident stroke, but few studies have been conducted for relatively low NO2 pollution areas. In this study, the short-term effects of NO2 on the risk of incident stroke in a relatively low-pollution area, Enshi city of Hubei Province, China, were investigated through time-series analysis. Daily air-pollution data, meteorological data, and stroke incidence data of residents in Enshi city from 1 January 2015 to 31 December 2018 were collected. A time-series analysis using a generalised additive model (GAM) based on Poisson distribution was applied to explore the short-term effects of low-level NO2 exposure on the risk of incident stroke and stroke subtypes, as well as possible age, sex, and seasonal differences behind the effects. In the GAM model, potential confounding factors, such as public holidays, day of the week, long-term trends, and meteorological factors (temperature and relative humidity), were controlled. A total of 9122 stroke incident cases were included during the study period. We found that NO2 had statistically significant effects on the incidence of stroke and ischemic stroke, estimated by excess risk (ER) of 0.37% (95% CI: 0.04-0.70%) and 0.58% (95% CI: 0.18-0.98%), respectively. For the cumulative lag effects, the NO2 still had a statistically significant effect on incident ischemic stroke, estimated by ER of 0.61% (95% CI: 0.01-1.21%). The two-pollutant model showed that the effects of NO2 on incident total stroke were still statistically significant after adjusting for other air pollutants (PM2.5, PM10, SO2, CO, and O3). In addition, the effects of NO2 exposure on incident stroke were statistically significant in elderly (ER = 0.75%; 95% CI: 0.11-1.40%), males (ER = 0.47%; 95% CI: 0.05-0.89%) and cold season (ER = 0.83%; 95% CI: 0.15-1.51%) subgroups. Our study showed that, as commonly observed in high-pollution areas, short-term exposure to low-level NO2 was associated with an increased risk of incident stroke, including ischemic stroke. Males and elderly people were more vulnerable to the effects of NO2, and the adverse effects might be promoted in the cold season.


Subject(s)
Air Pollutants , Air Pollution , Ischemic Stroke , Stroke , Aged , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , China/epidemiology , Humans , Male , Nitrogen Dioxide/analysis , Particulate Matter/analysis , Stroke/chemically induced , Stroke/epidemiology
2.
Thorax ; 2021 Feb 16.
Article in English | MEDLINE | ID: covidwho-1318208

ABSTRACT

BACKGROUND: As the epidemic of COVID-19 is gradually controlled in China, a summary of epidemiological characteristics and interventions may help control its global spread. METHODS: Data for COVID-19 cases in Hubei Province (capital, Wuhan) was extracted until 7 March 2020. The spatiotemporal distribution of the epidemic in four periods (before 10 January, 10-22 January, 23 January-6 February and 7 February-7 March) was evaluated, and the impacts of interventions were observed. RESULTS: Among 67 706 COVID-19 cases, 52 111 (76.97%) were aged 30-69 years old, and 34 680 (51.22%) were women. The average daily attack rates (95% CI) were 0.5 (0.3 to 0.7), 14.2 (13.2 to 15.1), 45.7 (44.0 to 47.5) and 8.6 (7.8 to 9.3) cases per 106 people in four periods, and the harmonic means (95% CI) of doubling times were 4.28 (4.01 to 4.55), 3.87 (3.78 to 3.98), 5.40 (4.83 to 6.05) and 45.56 (39.70 to 52.80) days. Compared with the first period, daily attack rates rose rapidly in the second period. In the third period, 14 days after 23 January, the daily average attack rate in and outside Wuhan declined by 33.8% and 48.0%; the doubling times increased by 95.0% and 133.2%. In the four periods, 14 days after 7 February, the daily average attack rate in and outside Wuhan decreased by 79.1% and 95.2%; the doubling times increased by 79.2% and 152.0%. CONCLUSIONS: The public health interventions were associated with a reduction in COVID-19 cases in Hubei Province, especially in districts outside of Wuhan.

3.
Sci Rep ; 11(1): 13648, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1294483

ABSTRACT

Few study has revealed spatial transmission characteristics of COVID-19 in Wuhan, China. We aimed to analyze the spatiotemporal spread of COVID-19 in Wuhan and its influence factors. Information of 32,682 COVID-19 cases reported through March 18 were extracted from the national infectious disease surveillance system. Geographic information system methods were applied to analysis transmission of COVID-19 and its influence factors in different periods. We found decrease in effective reproduction number (Rt) and COVID-19 related indicators through taking a series of effective public health measures including restricting traffic, centralized quarantine and strict stay-at home policy. The distribution of COVID-19 cases number in Wuhan showed obvious global aggregation and local aggregation. In addition, the analysis at streets-level suggested population density and the number of hospitals were associated with COVID-19 cases number. The epidemic situation showed obvious global and local spatial aggregations. High population density with larger number of hospitals may account for the aggregations. The epidemic in Wuhan was under control in a short time after strong quarantine measures and restrictions on movement of residents were implanted.


Subject(s)
COVID-19/epidemiology , Basic Reproduction Number , COVID-19/transmission , China/epidemiology , Disease Outbreaks , Humans , SARS-CoV-2/isolation & purification , Spatio-Temporal Analysis
4.
Respir Res ; 21(1): 257, 2020 Oct 08.
Article in English | MEDLINE | ID: covidwho-840798

ABSTRACT

BACKGROUND: Coronavirus Disease 2019 (COVID-19) spread rapidly around the world. We aimed to describe the epidemiological characteristics and the entire evolution of COVID-19 in Wuhan, and to evaluate the effect of non-pharmaceutical intervention by the government. METHODS: The information of COVID-19 cases until Mar 18, 2020 in Wuhan were collected from the national infectious disease surveillance system in Hubei province. RESULTS: A total of 49,973 confirmed cases were reported until Mar 18, 2020 in Wuhan. Among whom, 2496 cases died and the overall mortality was 5.0%. Most confirmed cases (25,619, 51.3%) occurred during Jan 23 to Feb 4, with a spike on Feb 1 (new cases, 3374). The number of daily new cases started to decrease steadily on Feb 19 (new cases, 301) and decreased greatly on Mar 1 (new cases, 57). However, the mortality and the proportion of severe and critical cases has been decreasing over time, with the lowest of 2.0 and 10.1% during Feb 16 to Mar 18, 2020, respectively. The percentage of severe and critical cases among all cases was 19.6%, and the percentage of critical and dead cases aged over 60 was 70.1 and 82.0%, respectively. CONCLUSION: The number of new cases has dropped significantly after the government taking the isolation of four types of personnel and the community containment for 14 days. Our results indicate that the mortality and proportion of severe and critical cases gradually decreased over time, and critical and dead cases are more incline to be older individuals.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Government Agencies , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Social Isolation , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Child , Child, Preschool , China/epidemiology , Coronavirus Infections/diagnosis , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Pneumonia, Viral/diagnosis , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL